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Impact of heat waves on wheat vield in
southern Australia

' = Effect %
Rainfall mm 22 1
Average daily minimum °C -161 -6
Average daily maximum °C -371 -15

Flowering
Days >30 °C number -379 -15
Days »35°C number -837 -33
Average Temperature °C -490 -19
Rainfall mm 23 1
Average daily minimum °C -125 -5
Average daily maximum °C -225 -9

Grainfill

Days >30 °C number -130 -5
Days >35°C number -179 -7
Average Temperature °C -244 -10

Data used from 600 southern-Australian NVTs, 2005-2010
Paul Telfer et al. 2015; AGT
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Greenhouse/chamber assays

Greenhouse Chamber; 3 days, 37/27 °C day/night
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Our two greenhouse/chamber assays
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Waagan x Drysdale heat tolerance QTL
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Grain filling tolerance
and stay green
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Floret sterility is associated with an absence
of starch in mature pollen grains
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Dominance of the 2B-QTL (grain set)
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Dominance of the 2B-QTL (pollen)
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Score % starchy pollen

% starchy pollen

WW WD DD
2B-QTLgenotype

» Intolerance may result from a loss of gene function



Does the 2B-QTL tolerance affect female
reproduction?
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No indication that it does (or at least to the
same extent as it does the pollen)




s the 2B-QTL tolerance the result of gene
expression in haploid cells?
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» Heat-stressing F, hybrids will not work as a
selection tool for heat tolerance breeding




Mitotic divisions in (haploid) microspores
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Image: Borg and Twell, 2011



Mitotic divisions were not affected...
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‘Normal’ tri-nucleate
pollen (DAPI staining):
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Tiller stage at heat treatment
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Tiller stage at heat treatment



Susceptible stage in cv. Drysdale

Pre meiosis

P ""M\
Early
meiosis

(80-90% of final spike length)

Meiosis Tetrad Early Late

Mumber of grains in floret 1&2

Binucleate

uninucleate  uninucleate

1)

Tapetum degradation
normally begins

Tolerance is suspected as being the result
of gene action in the tapetal cells

Starch accumulation
normally begins

Drysdale 187

Trinucleate
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Llnkage tO rUSt reS|StanCe geneS (Drysdale x Waagan population)

Grain filling tolerance

Rust resistance
Pseudo black chaff
Heat induced seedling chlorosis
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Response to heat shock — senescence in the grain
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Shirdelmoghanloo et al. 2016. Functional Plant Biology 43:919-930
Shirdelmoghanloo et al. 2016. Acta Physiol Plant 38:208
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