

Testing Non-Transgenic CRISPR Technology for Wheat Improvement

KALI M BRANDT, HILARY L GUNN, BRETT L BUSCHKE, ADAM HEESACKER, NATHALIA MORETTI, ALEXANDER KARASEV, ROBERT S ZEMETRA

13TH IWGS - TULLN, AUSTRIA

APRIL 28, 2017

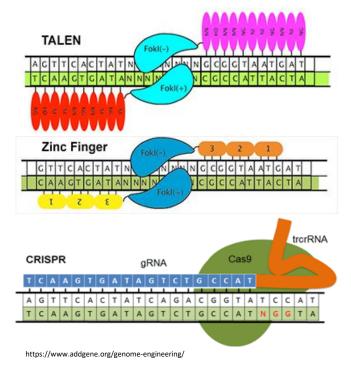
Why CRISPR?

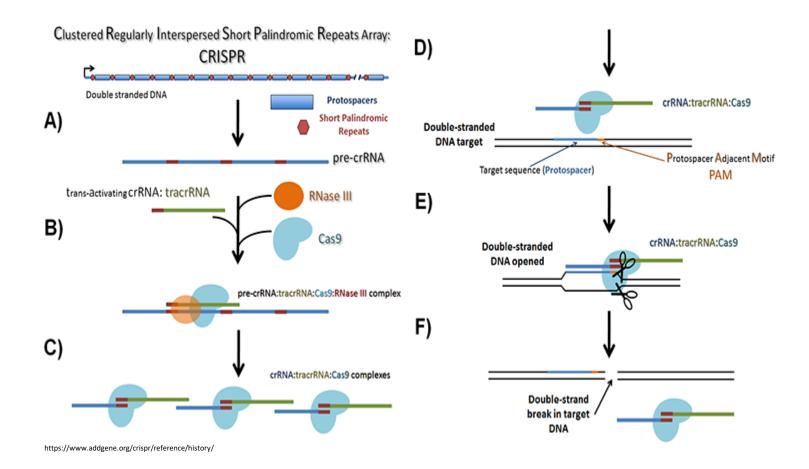
•Easy

Unlimited Targets

Cheap

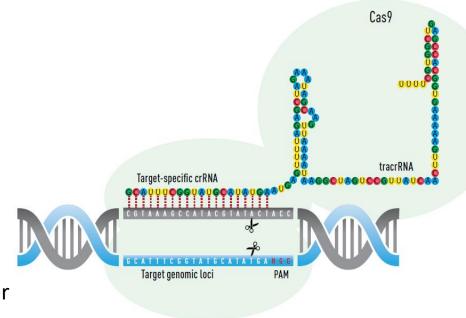
•Non-Transgenic


CRISPR-Cas Bacterial System

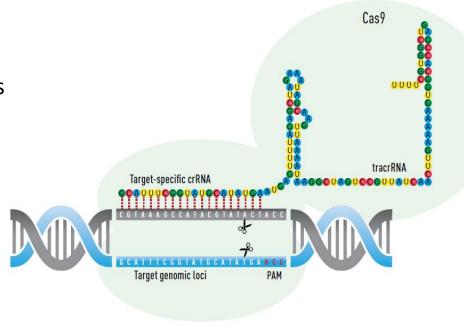

CRISPR

- Clustered Regularly Interspaced Short Palindromic Repeats
- Bacterial adaptive immunity system

Cas


- CRISPR Associated
- •3 distinct systems: Types I, II, and III
 - Cas9 is Type II
- •First eukaryotic use in 2013
 - Previously TALENs and Zinc Fingers for specific targeting

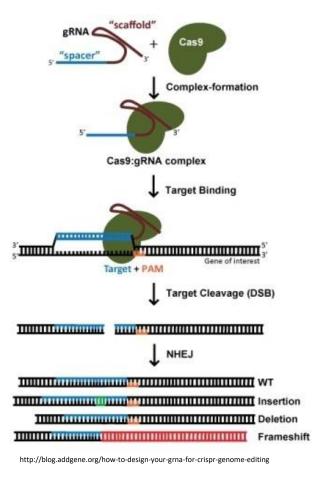
How It Works


- •2 Components
 - Cas9 endonuclease & Guide RNA (gRNA)
- •Can target anywhere that meets 2 conditions:
 - Sequence is unique in the genome
 - Target is 3nt away from a Protospacer Adjacent Motif (PAM)
 - 5'-20nt-NGG and 5'-CCN-20nt

https://www.thermofisher.com/us/en/home/technical-resources/technical-reference-library/genome-editing-support-center/crispr-based-genome-editing-support/crispr-based-genome-editing-support-getting-started.html

How It Works

- •Ribonucleoprotein (RNP) complex forms and activates Cas9
 - Successful DNA binding activates RuvC and HNH endonuclease domains
 - DNA strands then cut
- •DSB repaired in one of two ways
 - HDR Homology Directed Repair
 - NHEJ Non-Homologous End Joining


https://www.thermofisher.com/us/en/home/technical-resources/technical-reference-library/genome-editing-support-center/crispr-based-genome-editing-support/crispr-based-genome-editing-support-getting-started.html

How It's Used

Type of edit:

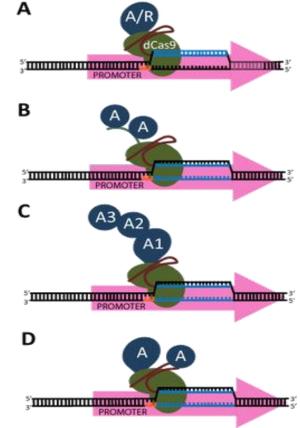
Indel

 NHEJ – most common & most error prone

How It's Used

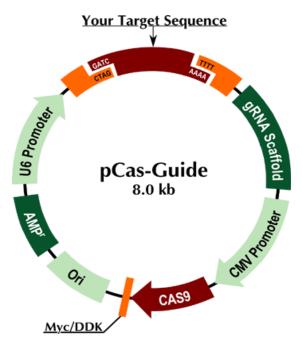
gRNA C Cas9 + "space **Repair Template with** Homology arms and base change **Complex-formation** Cas9:gRNA complex **Target Binding** °,**11111111** Gene of interest Target + PAM Target Cleavage (DSB) HDR

"scaffold"

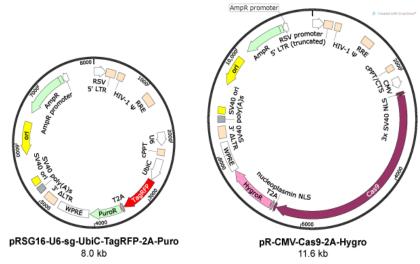

http://blog.addgene.org/how-to-design-your-grna-for-crispr-genome-editing

Type of edit:

- Specific change
 - HDR less common & more precise
 - Low efficiency
 - Requires single cell cloning and screening


How It's Used

- Activation/Repression
 - Has ability to bind target DNA independent of cleavage
 - Endonuclease domains inactivated \rightarrow "dead Cas9"
 - Target dCas9 to transcription start sites or promoter regions
 - Add transcription repressors or activators
 - Reversible
- Multiplex Genome Editing
 - Several gRNAs at once


http://blog.addgene.org/how-to-design-your-grna-for-crispr-genome-editing

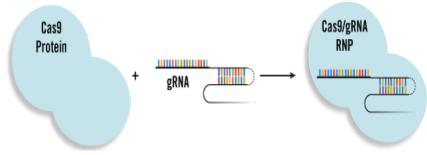
- Plasmid Expression vector
 - Transient or stable, high efficiency

http://www.origene.com/CRISPR-CAS9/GE100001.aspx

- Plasmid Expression vector
 - Transient or stable, high efficiency
- •Integrating virus eg. lentivirus
 - Stable expression, good for recalcitrant lines, *in vivo*, genome-wide screening
- •Transient viral expression eg. Adenovirus
 - less off-target effects

https://www.biocat.com/genomics/genome-engineering/crispr-cas9-lentiviral-guide-rna-cloning-vectors-and-control-constructs

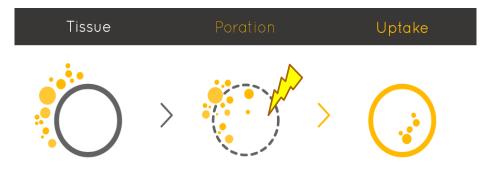
- Plasmid Expression vector
 - Transient or stable, high efficiency
- Integrating virus eg. lentivirus
 - Stable expression, good for recalcitrant lines, *in vivo*, genome-wide screening
- Transient viral expression eg. Adenovirus
 - stable cell lines
 - less off-target effects
- Cas9 mRNA + gRNA
 - In vitro transcription of plasmids
 - Transient (RNA degraded in cell)



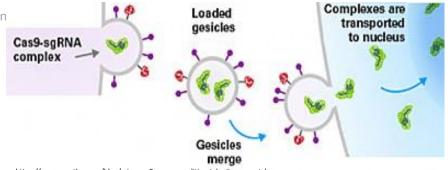
https://pluripotentstemcell.wordpress.com/crispr-core-sigma-psc-core/plasmid-based-crispr-mescs-cell-lines/

- Plasmid Expression vector
 - Transient or stable, high efficiency
- Integrating virus eg. lentivirus
 - Stable expression, good for recalcitrant lines, *in vivo*, genome-wide screening
- Transient viral expression eg. Adenovirus
 - stable cell lines
 - less off-target effects
- Cas9 mRNA + gRNA
 - In vitro transcription of plasmids
 - Transient (RNA degraded in cell)

Ribonucleoprotein Complexes (RNP)


- Cas9 protein + in vitro transcribed gRNA form Cas9-gRNA complex
- Transient

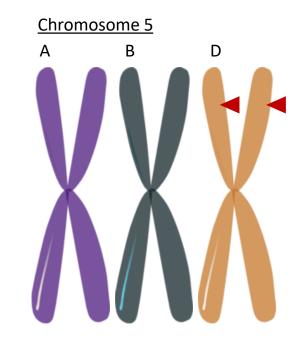
https://www.mirusbio.com/applications/genome-editing-using-crispr-cas/rnp-delivery


- Plasmid Expression vector
 - Transient or stable, high efficiency
- Integrating virus eg. lentivirus
 - Stable expression, good for recalcitrant lines, *in vivo*, genome-wide screening
- Transient viral expression eg. Adenovirus
 - stable cell lines
 - less off-target effects
- Cas9 mRNA + gRNA
 - *In vitro* transcription of plasmids
 - Transient (RNA degraded in cell)
- Ribonucleoprotein Complexes
 - Cas9 protein + *in vitro* transcribed gRNA form Cas9-gRNA complex
 - Transient

 Electroporation of plasmid DNA, mRNA, Cas9 protein + gRNA, or nonintegrating viruses

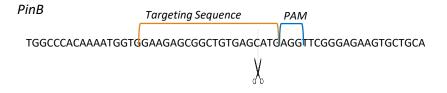
http://oncosec.com/tag/electroporation/

- Plasmid Expression vector
 - Transient or stable, high efficiency
- Integrating virus eg. lentivirus
 - Stable expression, good for recalcitrant lines, in vivo, genome-wide screen
- Transient viral expression eg. Adenovirus
 - stable cell lines
 - less off-target effects
- Cas9 mRNA + gRNA
 - In vitro transcription of plasmids
 - Transient (RNA degraded in cell)
- Ribonucleoprotein Complexes
 - Cas9 protein + in vitro transcribed gRNA form Cas9-gRNA complex
 - Transient
- Electroporation of plasmid DNA, mRNA, Cas9 protein + gRNA, or non-integrating viruses
- Gesicles (nanovesicles)
 - Cas9-sgRNA RNP complex from producer cell line inside gesicles
 - Gesicles have binding and fusion proteins on surface


https://www.westburg.eu/blog/crisprcas9-genome-editing-take-it-up-a-notch

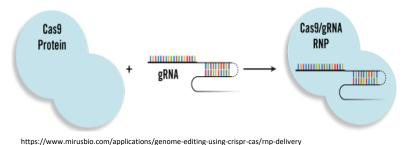
Our CRISPR-Cas9 Project

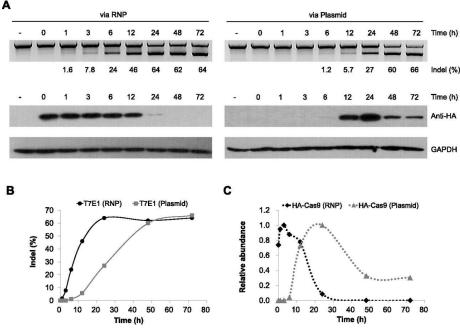
Step 1: Choose Target Gene


- PinB
 - Only on D genome
 - Wt gives soft seeds, knockout gives hard seeds
 - Very specific (as far as wheat genes go)
- •We already have a KASP SNP marker
 - So we targeted same base with Cas9

Step 1: Choose Target Gene

- Variety Bobwhite
 - Wt PinB gene
 - Spring type
 - Goes through tissue culture well





http://plantgrowthfacilities.agsci.colostate.edu

Step 2: Choose Delivery Method

- Ribonucleoprotein Complex (RNPs)
 - Simplest form of delivery
 - Short lifespan in cells
 - Plasmids express for several days
 - "...continuous expression...gives rise to the accumulation of off-target mutations."

Kim et al., 2014

Embryo Culture

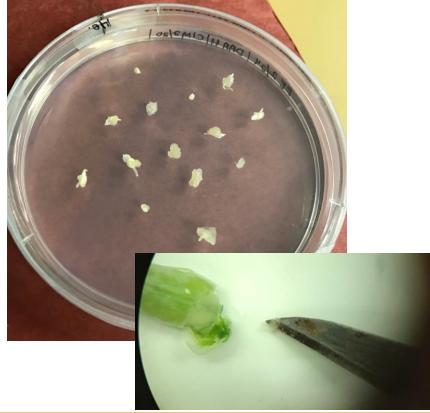
- •Wheat head cleaned in EtOH \rightarrow 5% Bleach \rightarrow rinsed in diH₂O
- •Seed removed from primary and secondary florets
- •Seed coat cut and peeled back
- Embryo removed and placed scutellum side up on callus induction medium

Embryo Culture

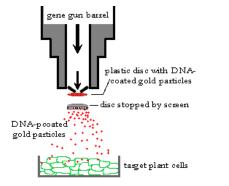
•Wheat head cleaned in EtOH \rightarrow 5% Bleach \rightarrow rinsed in diH₂O

•Seed removed from primary and secondary florets

- •Seed coat cut and peeled back
- •Embryo removed and placed scutellum side up on callus induction medium


Embryo Culture

- •Wheat head cleaned in EtOH \rightarrow 5% Bleach \rightarrow rinsed in diH_2O
- •Seed removed from primary and secondary florets
- Seed coat cut and peeled back
- •Embryo removed and placed scutellum side up on callus induction medium


Embryo Culture

- •Wheat head cleaned in EtOH \rightarrow 5% Bleach \rightarrow rinsed in diH_2O
- •Seed removed from primary and secondary florets
- •Seed coat cut and peeled back
- •Embryo removed and placed scutellum side up on callus induction medium
 - 2 weeks later...

Biolistics/Gene Gun

- No *agrobacterium* required no transgenics
- Have a protocol in place and all equipment
- Shown to work with RNPs in Wheat
 - Liang et al, 2017, Nature Communications

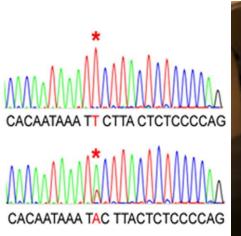
http://nepad-abne.net/biotechnology/process-of-developing-geneticallymodified-gm-crops/plant-transformation-using-particle-bombardment/

Tissue Culture/Plantlet Regeneration

- Transform callus
 - Leave on Callus Induction Medium for 2-3 days
- Transfer to Shoot Induction Medium
 - 2-4 weeks

Tissue Culture/Plantlet Regeneration

- •Transform callus
 - Leave on Callus Induction Medium for 2-3 weeks
- •Transfer to Shoot Induction Medium
 - 2-4 weeks
- Transfer to Root Induction Medium



Step 4: Transformation Validation

Plantlet Regeneration

Root Induction Medium

- Take samples for PinB PCR
- Sanger Sequence and analyze
- Transformed plantlets moved to soil in greenhouse
 - Phenotype seeds
 - Genotype next generation

https://www.biostars.org/p/118646/

Where We Are Going

• Previous RNP delivery in Wheat and Corn

• 2.4 – 9.7% transformation efficiency

• Very little to no off-target effects found in literature

- But still need to confirm
- Lentivirus transformation test
 - in vivo \rightarrow no tissue culture

Conclusions

```
•Easy √ So far...
•(Virtually) Unlimited Targets √
•Cheap √
•Non-Transgenic √
```

<u>Acknowledgements</u>

Hilary Gunn

Nathalia Moretti

Brett L Buschke Alexander Karasev

UNC

CREGON WHEAT COMMISSION

Dr. Bob Zemetra

Adam Heesacker

Questions?

References

Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Comm 8: 14261. doi: 10.1038/ncomms14261.

Rasco-Gaunt S, Riley A, Cannell M, Barcelo P, Lazzeri PA (2001) Procedures allowing the transformation of a range of European elite wheat (*Triticum aestivum* L.) varieties via particle bombardment. Journal of Exp Bot 52: 865-874.

Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Comm 7: 13274. doi: 10.1038/ncomms13274.

Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotech 33: 1162-1165. doi: 10.1038/nbt.3389.

Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Comm 7: 12617. doi: 10.1038/ncomms12617.