
Optimization of multi-environment trials 
for genomic selection based on 

crop models

R. Rincent, E. Kuhn, H. Monod, V. Allard, J. Le Gouis

Prediction
of the genetic parameters

  

Crop Growth Model

Selection candidates

Environmental covariates

Performance predictions
of the selection candidates in all 

environments of interest

Estimation
of the genetic parameters  

Construction of the prediction model
QTL detection

Genomic prediction model

Calibration set

1IWGS 2017- Tulln



Introduction
- Genotype x Environment Interactions

Most crops submitted to Genotype x Environment Interactions (GEI)

Challenge : The best varieties depend on the environment

Opportunity : Local adaptation, tolerance to climate change...
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Introduction
- Marker assisted prediction

It is not possible to evaluate all possible genotypes in all possible 
environments.

Molecular markers can be used to make predictions – Genomic 
Selection (GS).

GS would be of great interest if it could predict GEI (main limiting 
factor for the implementation of GS in plants).

Heffner et al. (2009)
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Introduction
- Predicting GEI

üWith environment specific marker effects (Burgueno et al. 2012, Schulz-
Streeck et al. 2013).

ü By including environmental covariates in the GS model (Heslot et al. 2014, 
Jarquin et al. 2014):

Factorial regression on the environmental covariates (slope specific).

Covariance between environments computed with the environmental covariates.

-> Gains limited so far (at best gain of 15%)

ü By combining Crop Growth Model (CGM) and genetic modelling 
(Reymond et al. 2003, Bogard et al. 2014, Cooper et al. 2016...)
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Introduction
- Predicting GEI by combining CGM and genetics
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Example: sensitivity to photoperiod in a CGM simulating flowering time is a genetic parameter.

Varieties with different sensitivities will react differently to change in photoperiods -> The CGM will 
automatically generate GEI.

Literature: White and Hoogenboom 1996, Reymond 2003, Quilot 2005, Bogard et al. 2014, Technow et al. 
2015...
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Introduction
- Predicting GEI by combining CGM and genetics

Prediction
of the genetic parameters

  

Crop Growth Model

Selection candidates

Environmental covariates

Performance predictions
of the selection candidates in all 

environments of interest

Estimation
of the genetic parameters  

Construction of the prediction model
QTL detection

Genomic prediction model

Calibration set

Calibration set used to train the prediction model for the genetic parameters

Major difficulty : estimate the genetic parameters for the individuals composing the calibration set.

No GEI for the genetic parameters θ (QTL and prediction formula stable for any environment).
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Introduction
- Estimate the genetic parameters by direct observations

INRA Montpellier

- In high-throughput phenotyping platforms
- In semi-controlled platforms
- In the fields

INRA Clermont - Ferrand-> Not possible for many traits (costs, no high-
throughput approach...)
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Introduction
- Estimate the genetic parameters by statistical inference

𝑌𝑖𝑗𝑘 = 𝑓  𝑖 , 𝐸𝑗 + 𝑒𝑖𝑗𝑘

Phenotypes
(easily observable)

Genetic
parameters

Environmental covariates

Residuals

Crop model

-> Estimate  𝑖 using Bayesian inference, non linear mixed models...

The precision of the estimation of 𝜽𝒊 is a key point because it will affect QTL detection power
and the accuracy of GS and thus genetic progress.

In which environments should the varieties be observed (Y) to get 
the most precise estimate of 𝜽𝒊 ?
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I/ OptiMET – Theory and practice

II/ Evaluating OptiMET with simulations (Wheat flowering 
time)

III/ Evaluating OptiMET with real data (Wheat flowering 
time)

Conclusions and perspectives
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Basic principle: A Multi-Environment Trial (MET) in which the CGM generates distant outputs 
for distant genetic parameter vectors. In this MET we suppose that two different varieties will
have different phenotypes, and so the statistical model will be able to distinguish between
these two varieties.

For this we consider a huge finite number (m) of possible a priori values of genetic 
parameters. These m genetic parameter vectors can be chosen based on expert knowledge 
or on literature.

𝑂𝑝𝑡𝑖𝑀𝐸𝑇𝑑 = σ𝑢,𝑣=1
𝑚 (dist( 𝑢,  𝑣) × 𝑊𝑢𝑣

𝑑 ).

Sum on each pair 
of parameter vector

Distance btw
the 2 parameter
vectors

Linked to the likelihood of  𝑢

given the synthetic noise-free 

data 𝑓  𝑣, 𝐸𝑗

We want MET with low OptiMET

I/ OptiMET - Theory

- Inspired from Leube et al. (2012).
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I/ OptiMET – In practice

To compute OptiMET, you need :

ü m representative parameter vectors (at least bounds of each parameters known)

ü To run your CGM on the candidate environments (likelihood)
- Climate of past years
- Statistics (average) over past years
- Climate simulator (complex covariate, climate change...)

ü Algorithm to find the MET minimizing OptiMET: exchange algorithm.
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I/ OptiMET – Case study

ü Target trait: Wheat flowering time

ü CGM: Sirius (Jamieson et al. 1998)
- 3 genetic parameters: VAI (vernalization), SLDL (photoperiod) and Phyllocron
- Env. Covariate: daily temperatures and day length

OptiMET computation:
ü m parameter vectors defined to sample homogeneously in the space defined by the 

boundaries of the 3  parameters: VAI: 0 to 0.01, SLDL: 0 to 1, Phyll: form 80 to 120.
m = 10 x 10 x 10 = 1000 (virtual genotypes).

ü Env. Covariates approximated by the local daily average over 12 past years.

ü The potential environments proposed to OptiMET are defined by a combination of a 
sowing date and location.
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II/ Evaluating OptiMET with simulations 

Sampling of the MET

J=156 sowing date x location combinations
characterised by daily temperature and 
daylength averaged over 12 years

Simulation of the genetic parameters

For each of the three parameters:
- Sample 25 SNP, simulate effects.
- Compute the parameter values of each of the 
370 varieties by multipliying the genotypes by 
the QTL effects.

For each environment (year x location x sowing date 
combinations = 12 x 156 = 1872 environments)
- Use Sirius to generate flowering time for each variety, 

using as inputs the parameter values generated in A 
and the daily temperatures and daylength of the 
specific year at the specific location.

- Add a random error.

Sample METs composed of Z=4 sowing
date x location combinations:
- Randomly
- By minimizing OptiMET
- Expert MET

Estimate parameters

Use the Bayesian algorithm to estimate the parameters of 
each of the I=100 varieties for each MET and each year

using the phenotypes simulated in B.

Evaluate the METs
For each combination year x MET, use the parameter estimates (from 2) and the 
simulated values (from A) to:
- Compute root mean square error.
- Compute detection power of association tests.
- Compute prediction accuracy of the genetic parameters of the individuals in validation.
- Compute prediction accuracy of the flowering time of the individuals in validation in 

the independent environments (C).

A

B
Split dataset

Calibration set (I=100 varieties)

Validation set (270 varieties)

For 28 independent environments:
- Use Sirius to generate flowering time for each variety, 

using as inputs the parameter values generated in A 
and the daily temperatures and daylength of the 
specific year at the specific location.

- Add a random error.

C

Simulation of the phenotypes
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II/ Evaluating OptiMET with simulations 

Potential environments OptiMET MET

At each location, 4 possible sowing dates:
15th of Sept., Oct., Nov. or March
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II/ Evaluating OptiMET with simulations 

OptiMET MET

Expert MET
Random MET

Lower NRMSE of 
the parameter estimates 

VAI SLDL Phyll

Higher QTL detection power

Higher prediction accuracy
of the parameters of the test set

Higher prediction accuracy
of flowering time of independent varieties

in independent environments
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III/ Evaluating OptiMET with real data 

2008/2009 

 
2009/2010 

sowing date location 

 
sowing date location 

17/10/2008 Allonnes 

 

23/10/2009 Mons-en-Chaussée 

20/10/2008 Mons-en-Chaussée 

 

28/10/2009 Clermont-Ferrand 

20/10/2008 Le Moulon 

 

28/10/2009 Louville 

22/10/2008 Auchy 

 

29/10/2009 Clermont-Ferrand 

23/10/2008 Villiers-le-Bâcle 

 

29/10/2009 Maule 

29/10/2008 Montroy 

 

29/10/2009 Caussade 

12/11/2008 Clermont-Ferrand 

 

30/10/2009 La Minière 

20/11/2008 Clermont-Ferrand 

 

25/11/2009 Villiers-le-Bâcle 

12/12/2008 La Miniere 

 

14/12/2009 Clermont-Ferrand 

24/12/2008 Mons-en-Chaussée 

 

15/12/2009 Clermont-Ferrand 

05/01/2009 Clermont-Ferrand 

 

23/02/2010 Clermont-Ferrand 

25/02/2009 Clermont-Ferrand 

 

04/03/2010 Mons-en-Chaussée 

16/03/2009 Mons-en-Chaussée 

   14/04/2009 Mons-en-Chaussée 

    1 

Dataset: 110 varieties, 26 environments with various sowing dates:

Sampling strategies for MET of size 4, 6 or 8: 
- OptiMET
- random
- reasoned (various sowing dates)

We suppose that the climate of these specific years is unknown. Again, we use the average of
temperature and day length over 12 other years.
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Criterion used to compare the efficiency of the different MET to estimate 
the 3 genetic parameters:

III/ Evaluating OptiMET with real data 

𝑁𝑅𝑀𝑆𝐸∗( 𝑠) =
1
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The reference values  𝑖𝑠
∗ are

the parameter estimates obtained
with the full dataset (26 envts)

Normalized Root Mean Square Error:

Normalized Posterior Quadratic Error:
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III/ Evaluating OptiMET with real data 
NRMSE NPQE

OptiMET MET composed of 4 environments performed better than the average of the 
reasoned MET composed of 8 environments.

OptiMET MET

Nb of envts in the MET:
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Conclusions and perspectives

ü Conclusions:

OptiMET was able to increase the precision of the parameter estimates, resulting in 
an increase of QTL detection power and GS-CGM prediction accuracy.

The optimized MET performed better than expert/reasoned MET.

ü Limits:

OptiMET requires a reliable CGM (in the environments of interest).

OptiMET cannot be used to define the optimal size of the MET.

ü Perspectives:

Apply to other traits/CGM. High-throughput phenotyping platforms.

Adapt OptiMET to compare MET of different sizes.
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𝐿𝑢𝑣
𝑑 =

1

(4𝜋𝜎𝑒
2)

Τ𝑛𝑦 2 𝑒𝑥𝑝 −
1

4𝜎𝑒
2 ∆𝑢𝑣

𝑑 𝑡
∆𝑢𝑣

𝑑 ,

where 𝑛𝑦 is the number of observations for a given variety (𝑛𝑦 = 𝑍 × 𝐾), and 

∆𝑢𝑣
𝑑 = (𝑓  𝑢, 𝐸𝑗 − 𝑓  𝑣, 𝐸𝑗 , 𝑗 ∈ Jd ), The quantity 𝐿𝑢𝑣

𝑑 corresponds to the 

likelihood of the parameter vector  𝑢 given the synthetic noise-free data 

(𝑓  𝑣, 𝐸𝑗 , 𝑗 ∈ Jd) (for more details see Leube et al. 2012, Appendix B).

The matrix (𝐿𝑢𝑣
𝑑 ) is normalized by computing the weight matrix 𝑊𝑢𝑣

𝑑 =
𝐿𝑢𝑣
𝑑

σ𝑢 𝐿𝑢𝑣
𝑑 .

We define the value of the criterion OptiMET for a given MET d by:

𝑂𝑝𝑡𝑖𝑀𝐸𝑇𝑑 = σ𝑢,𝑣=1
𝑚 (dist( 𝑢,  𝑣) × 𝑊𝑢𝑣

𝑑 ).


